【多选题】一物体沿同一方向作匀变速直线运动,从A点出发,经过时间t到达B点,此过程中位移大小为S.已知此物体从A点出发,完成前S/2的路程时的速度为v1,而物体从A点出发,经过前t/2的时间时的速度为v2,则:( )A.作匀加速运动时,v1>v2B.作匀减速运动时,v1>v2C.作匀加速运动时,v1
问题描述:
【多选题】一物体沿同一方向作匀变速直线运动,从A点出发,经过时间t到达B点,此过程中位移大小为S.已知此物体从A点出发,完成前S/2的路程时的速度为v1,而物体从A点出发,经过前t/2的时间时的速度为v2,则:( )
A.作匀加速运动时,v1>v2
B.作匀减速运动时,v1>v2
C.作匀加速运动时,v1
答
a
答
答案:AB
分析:用v—t图象分析,加速、减速都一样均是位置中点的瞬时速度大于时间中点的瞬时速度。
答
可以 用数值法来做.
先分析加速运动.设物体的初速度为0,加速度a=1m/s^2,时间t=4s,则路程S=V(0)t+1/2*a*t^2=0.5*1m/s^2*(4s)^2=8m,则v1^2=2*a*(S/2)=2*1m/s^2*8m/2=8(m/s)^2,所以v1=根号(8)m/s=2.83m/s.v2=a*t/2=1m/s^2*4s/2=2m/s,所以对于加速运动,v1>v2.
再分析减速运动.设物体的初速度v0=4m/s,加速度为a=-1m/s^2,时间t=2s,则路程S=v0*t+1/2*a*t^2=4m/s*2s+1/2*(-1m/s^2)*(2s)^2=6m,则v1^2-v0^2=2*a*(S/2),即v1^2-(4m/s)^2=2*(-1m/s^2)*(6m/2),求解得v1=根号(10)m/s=3.16m/s,v2=v0+a*t/2=4m/s+(-1m/s^2)*(2s/2)=3m/s,所以对于减速运动,v1>v2.所以选择A、B.