圆的参数方程直线x=1+(1/2)t,y=-3倍根3+(根3/2)t(t为参数),与圆x^2+y^2=16相交与A,B两点,求|AB|
问题描述:
圆的参数方程
直线x=1+(1/2)t,y=-3倍根3+(根3/2)t(t为参数),与圆x^2+y^2=16相交与A,B两点,求|AB|
答
t=2(x-1)=2(y+3√3)/√32x-2=(2/√3)y+6y=√3(x-4)代入圆x^2+3(x-4)^2=164x^2-24x+48=16x^2-6x+8=0x1+x2=6,x1x2=8(x1-x2)^2=(x1+x2)^2-4x1x2=4(y1-y2)^2=[√3(x1-4)-√3(x2-4)]^2=[√3(x1-x2)]^2=3*4=12所以AB^2=(x1...