若复数|w|=1,Z=x+yi(x,y属于R),且3w的共轭复数-Z=i,求复数Z在复平面上对应点的轨迹方程.
问题描述:
若复数|w|=1,Z=x+yi(x,y属于R),且3w的共轭复数-Z=i,求复数Z在复平面上对应点的轨迹方程.
答
设:z=x+yi、w=a+bi,则:
|w|=1,得:a²+b²=1 ----------------------------(1)
又:
3w的共轭复数=z+i,则:
3(a-bi)=(x+yi)+1
3a-3bi=(x+1)+yi
则:
3a=x+1
-3b=y
即:
a=(x+1)/3、b=-(y/3)代入(1),得:
[(x+1)/3]²+[-(y/3)]²=1,即:
(x+1)²+y²=9