A是n阶矩阵,a1,a2,.an是线性无关的n维向量,满足Aai=ai+1(i从1取到n-1),Aan=a1,求A行列式值
问题描述:
A是n阶矩阵,a1,a2,.an是线性无关的n维向量,满足Aai=ai+1(i从1取到n-1),Aan=a1,求A行列式值
答
|A| |a1,...,an|= |A(a1,...,an)|= |a2,a3,...,an,a1|最后一列依次与前一列交换,直到交换到第1列,共交换n-1次= (-1)^(n-1) |a1,...,an|由于a1,...,an 线性无关所以 |a1,...,an|≠0所以 |A| = (-1)^(n-1)....