若实数x、y、z满足2|x−y|+2y+z+z2−z+1/4=0,则x+y+z=_.

问题描述:

若实数x、y、z满足2|x−y|+

2y+z
+z2−z+
1
4
=0,则x+y+z=______.

根据题意,2|x−y|+

2y+z
+z2−z+
1
4
=0,
整理后:2|x−y|+
2y+z
+(z−
1
2
)
2
=0

x−y=0
2y+z=0
z−
1
2
=0
,解得x=y=
1
4
,z=
1
2

∴x+y+z=(-
1
4
)+(
1
4
)+
1
2
=0.