abc三个数的算术平均值,和他们的几何平均值大小
问题描述:
abc三个数的算术平均值,和他们的几何平均值大小
即证明
a+b+c/3≥(abc)的立方根
答
只对正数证明,令x³=a.y³=b.z³=c.
x³+y³+z³-3xyz=(x+y+z)(x²+y²+z²-xy-xz-yz)
=(x+y+z)[(x-y)²+(y-z)²+(z-x)²]/2≥0.
即a+b+c-3(abc)^1/3≥0.(a+b+c)/3≥(abc)的立方根
(一般不成立,例如a=b=1,c=-27..(a+b+c)/3<-8<-3=(abc)的立方根)