已知集合A={x|ax2+2x+1=0,x∈R},a为实数.(1)若A是空集,求a的取值范围;(2)若A是单元素集,求a的值;(3)若A中至多只有一个元素,求a的取值范围.

问题描述:

已知集合A={x|ax2+2x+1=0,x∈R},a为实数.
(1)若A是空集,求a的取值范围;
(2)若A是单元素集,求a的值;
(3)若A中至多只有一个元素,求a的取值范围.

解(1)若A=Φ,则只需ax2+2x+1=0无实数解,显然a≠0,所以只需△=4-4a<0,即a>1即可.
(2)当a=0时,原方程化为2x+1=0解得x=-

1
2
;当a≠0时,只需△=4-4a=0,即a=1,故所求a的值为0或1;
(3)综合(1)(2)可知,A中至多有一个元素时,a的值为0或a≥1.