设A、B是两个非空集合,定义A与B差集为A-B={x|x∈A,且x∉B},则A-(A-B)等于( ) A.A B.B C.A∩B D.A∪B
问题描述:
设A、B是两个非空集合,定义A与B差集为A-B={x|x∈A,且x∉B},则A-(A-B)等于( )
A. A
B. B
C. A∩B
D. A∪B
答
∵A、B是两个非空集合,
A-B={x|x∈A,且x∉B},
∴A-B表示的是A中除去A∩B的部分,
∴A-(A-B)=A∩B.
故选C.