y=x[arcsin(x/2)]^2 怎么求解它的导数?
问题描述:
y=x[arcsin(x/2)]^2 怎么求解它的导数?
答
y=[arcsin(x/2)]^2 +x×2×[arcsin(x/2)]×{根号1/[1-(x/2)^2]}×(1/2)
y=x[arcsin(x/2)]^2 怎么求解它的导数?
y=[arcsin(x/2)]^2 +x×2×[arcsin(x/2)]×{根号1/[1-(x/2)^2]}×(1/2)