过抛物线y2=4x焦点F的直线L与它交于A,B两点,若|AB|=8,求三角形AOB面积
问题描述:
过抛物线y2=4x焦点F的直线L与它交于A,B两点,若|AB|=8,求三角形AOB面积
答
设直线L:y=kx+b,A(x1,y1),B(x2,y2),抛物线焦点F(1,0),
把F带入直线得,0=k+b,即b=-k;
把A、B带入直线得y1=kx1+b,y2=kx2+b,相减得y1-y2=k(x1-x2);
带直线入抛物线得y²=4(y-b)/k,ky²-4y+4b=0,ky²-4y-4k=0,则y1+y2=4/k,y1y2=-4;
|AB|²=(x1-x2)²+(y1-y2)²=(y1-y2)²/k²+(y1-y2)²=(1+1/k²)(y1-y2)²
=(1+1/k²)[(y1+y2)²-4y1y2]=(1+1/k²)(16/k²+16)=64,
则k=±1;
S△AOB=S△AOF+S△BOF=1/2|OF||y1|+1/2|OF||y2|=1/2|OF|(|y1|+|y2|),由图知,y1与y2一正一负,故|y1|+|y2|=|y1-y2|,那么(y1-y2)²=(y1+y2)²-4y1y2=32,即|y1|+|y2|=|y1-y2|=4√2;
综上,S△AOB=2√2.