已知函数 f(x)=ax+x-b的零点xb∈(n,n+1)(n∈Z),其中常数a,b满足2a=3,3b=2,则n的值是( ) A.-2 B.-1 C.0 D.1
问题描述:
已知函数 f(x)=ax+x-b的零点xb∈(n,n+1)(n∈Z),其中常数a,b满足2a=3,3b=2,则n的值是( )
A. -2
B. -1
C. 0
D. 1
答
∵2a=3,3b=2,∴a=log23,b=log32,
∴函数f(x)=(log23)x+x-log32,且函数是R上的增函数,
而f(-1)=-1<0,f(0)=1-log32>0,
∴函数f(x)=(log23)x+x-log32在(-1,0)内有一个零点,
故n=-1,
故选B.