1/1×3+1/2×4+1/3×5+…+1/9×11+1/10×12.有点乱,/是分数分号

问题描述:

1/1×3+1/2×4+1/3×5+…+1/9×11+1/10×12.有点乱,/是分数分号

1/[n * (n+2)] = [1/n - 1/(n+2)]/21/(1*3) + 1/(2*4) + 1/(3*5) + ...+ 1/(9*11) + 1/(10*12)= (1/1 - 1/3)/2 + (1/2 - 1/4)/2 + (1/3 - 1/5)/2 + ...+ (1/9 - 1/11)/2 + (1/10 - 1/12)/2= (1/1 - 1/3 + 1/3 - 1/5 ...请问那个(1/2-1/4+1/4…-1/12)÷2是怎么来的?最上面有个公式,裂项公式1/[n * (n+2)] = [1/n - 1/(n+2)]/2