】关于x的方程log4#(x^2)=log2#(x+4)-t

问题描述:

】关于x的方程log4#(x^2)=log2#(x+4)-t
(1).在区间(-2,-1)内x有解,求t范围
(2).方程仅有一解,求t的取值范围并求出这个解.
单独交流

(1)
方程左边为2log4#|x|=log2#|x|(换底公式)
移项得到log2#|x|-log2#(x+4)=-t
上式左边为log2#(|x|/(x+4))=-t ……(a)
当x