已知某数的平方根是a+3和2a-15,b的立方根是2,求b-a的平方根.

问题描述:

已知某数的平方根是a+3和2a-15,b的立方根是2,求b-a的平方根.

∵a+3+2a-15=0,
∴a=4,
∵8的立方根为2,
∴b=8,
∴b-a=8-4=4,
而4的平方根为±2,
即b-a的平方根为±2.
答案解析:根据一个非负数的平方根互为相反数得到a+3+2a-15=0,解方程求出a,根据8的立方根为2得到b=8,则b-a=8-4=4,
然后根据平方根的定义得到b-a的平方根.
考试点:平方根;立方根;解一元一次方程.
知识点:本题考查了平方根的定义:如果一个数的平方等于a,那么这个数叫a的平方根,记作

a
(a≥0).也考查了立方根的定义以及解一元一次方程.