x1,x2为x^2+3x+1=0的两实数根,则x1^3+8x2+20=?能用特殊符号就用,不能就尽量美观点。1、3楼均错!
问题描述:
x1,x2为x^2+3x+1=0的两实数根,则x1^3+8x2+20=?
能用特殊符号就用,不能就尽量美观点。1、3楼均错!
答
2楼ture
答
x²+3x+1=0
(x+2)(x+1)=0 希望能帮到你,如果不懂,请Hi我,祝学习进步!
x1=-2 x2=-1
x1³+8x2+20
=(-2)³+8×(-1)+20
=-8-8+20
=4
答
x1,x2是方程的根,所以x1+x2=-3;
且x1^2+3x1+1=0即x1^2=-3x1-1,
则x1^3=(-3x1-1)*x1=-3x1^2-x1,把x1^2=-3x1-1代入该式,得:x1^3=-3(-3x1-1)-x1=8x1+3
即:x1^3=8x1+3
所以x1^3+8x2+20=8x1+8x2+23=8(x1+x2)+23=-1
如果不懂,请Hi我,
答
x²+3x+1=0
(x+2)(x+1)=0
x1=-2 x2=-1
x1³+8x2+20
=(-2)³+8×(-1)+20
=-8-8+20
=4