设X1,X2……Xn是相互独立的随机变量序列且他们服从参数λ的泊松分布,则由中心极限定理知lim n趋向无穷大P﹛ ﹜=Φ(x)
问题描述:
设X1,X2……Xn是相互独立的随机变量序列且他们服从参数λ的泊松分布,则由中心极限定理知
lim n趋向无穷大P﹛ ﹜=Φ(x)
答
用定义做就行
lim(n->∞)P{[∑(1,n)Xi-n*E(Xi)]/[√n*√D(Xi)]≤x}=Φ(x)
因为Xi~P(λ),所以E(Xi)=D(Xi)=λ,代到上式
lim(n->∞)P{[∑(1,n)Xi-n*λ]/[√n*√λ]≤x}=Φ(x)