菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:

问题描述:

菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:
①△AED≌△DFB;
②S四边形BCDG= 34CG2.
③若AF=2DF,则BG=6GF.其中正确的结论(  )
A、只有①② B、只有①③ C、只有②③ D、①②③
写错了,2问为,SBCDG=4分之根号3*(CG的平方)

①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②延长FB到G',取BG'=DG,连接CG',易证出 △CDG≌△CBG'(SAS)∴∠DCG=∠BCG',CG=CG'∠DCB=∠GCB+∠BCG'=...