如图,在平面直角坐标系中点c(-3,0),点A,B分别在x轴,y轴的正半轴上,且满足√OB-3 +|OA―1|=0.
问题描述:
如图,在平面直角坐标系中点c(-3,0),点A,B分别在x轴,y轴的正半轴上,且满足√OB-3 +|OA―1|=0.
(1)求点A,B的坐标,(2)若点P从C点出发,以每秒1个单位的速度沿射线CB运动,连结AP.设ΔABP的面积为S,点P的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围,(3)在(2)的条件下,是否存在点P,使以点A,B,P为顶点的三角形与ΔAOB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.只要第三题的答案,不过过程必须写,网上的答案就不用回答了,我网上的都看过了,看不懂,不是网上找来的来回答
答
OA=1, OB=√3 所以A(1,0),B(0,√3) AB=2 BC=2√3 AC=4 因为:AB^2+BC^2=AC^2 所以ABC为直角三角形 CP=t 当0