已知:x-y=5,z-y=3,求x^2+y^2+z^2-xy-yz-xz的值
问题描述:
已知:x-y=5,z-y=3,求x^2+y^2+z^2-xy-yz-xz的值
答
x-y=5,z-y=3
两式想减得
x-z=2
x^2+y^2+z^2-xy-yz-xz
=1/2(2x^2+2y^2+2z^2-2xy-2yz-2xz)
=1/2(x-y)²+1/2(z-y)²+1/2(x-z)²
=1/2(25+9+4)
=19