设集合A=(X|X2-3X+2=0),B=(X|x2+2(a+1)X+(a2-5)=0.若AUB=A,求实数a的取值范围

问题描述:

设集合A=(X|X2-3X+2=0),B=(X|x2+2(a+1)X+(a2-5)=0.若AUB=A,求实数a的取值范围

A={x|x²-3x+2=0}={1,2},
B={x|x²+2(a+1)x+(a²-5)=0},
∵A∪B=A,
∴B是A的子集,又A的子集有Φ,{1},{2},{1,2}
①当B=Φ时,△=4(a+1)²-4(a²-5)②当B={1}时,△=0且1是方程x²+2(a+1)x+(a²-5)=0的根,∴a不存在;
③当B={2}时,△=0且2是方程x²+2(a+1)x+(a²-5)=0的根,∴a= -3;
④当B={1,2}时,△>0且1和2是方程x²+2(a+1)x+(a²-5)=0的根,∴a不存在,
综上,a的取值范围是a≤-3.