如图,矩形ABCD中,AB=1,若直角三角形ABC绕AB旋转所得圆锥的侧面积和矩形ABCD绕AB旋转所得圆柱的侧面积相等,求BC的长.

问题描述:

如图,矩形ABCD中,AB=1,若直角三角形ABC绕AB旋转所得圆锥的侧面积和矩形ABCD绕AB旋转所得圆柱的侧面积相等,求BC的长.

∵S圆锥侧=π•BC•AC,S圆柱侧=2π•BC•CD,
又∵S圆锥侧=S圆柱侧
∴π•BC•AC=2π•BC•CD,
∴AC=2CD,
∵ABCD为矩形,
∴CD=AB=1,∴AC=2CD=2,
在Rt△ABC中,BC=

AC2−AB2
3

∴BC=
3