证明4个连续的自然数的积加一必为完全平方数
问题描述:
证明4个连续的自然数的积加一必为完全平方数
答
设最小的是n
那么:
n(n+1)(n+2)(n+3)+1
=n(n+3)(n+1)(n+2)+1
=(n^2+3n)(n^2+3n+2)+1
=(n^2+3n)^2+2(n^2+3n)+1
=(n^2+3n+1)^2
所以,四个连续自然数的积加1必为一完全平方数.