函数f(x)对于任意实数x满足条件f(x+2)=1/f(x),若f(1)=-5,求f(f(5))

问题描述:

函数f(x)对于任意实数x满足条件f(x+2)=1/f(x),若f(1)=-5,求f(f(5))
解析是这样不过中间不理解:由f(x+2)=1/f(x)得f(x+4)=1/f(x+2)=f(x),所以f(5)=f(1)=-5,则f(f(5))=f(-5)=f(-1)=1/f(-1+2)=1/f(1)=-1/5.所以和则那边为什么可以那样 不理解
具体说说为什么f(5)为什么会等于f(1)=-5

由f(x+2)=1/f(x)得f(x+4)=1/f(x+2)=f(x).
标f(x+2)=1/f(x)为(1)式,
令上式中x=3,有
(1)式:f(3+2)=1/f(3)
而f(3)=f(1+2)
=1/f(1)
所以f(5)=1/f(3)
=f(1)
=-5
故f(f(5))=f(-5)
又f(x+2)=1/f(x),即f(x)=1/f(x+2)(2式)
所以f(f(5))=f(-5)
=1/f(-5+2)
=1/f(-3)【而根据(2)式,f(-3)=1/f(-3+2)=1/f(-1)】
=f(-1)【而根据(2)式,f(-1)=1/f(-1+2)=1/f(1)】
=1/f(1)
=-1/5