A和B两个随机事件,证明命题:对任意正概率随机事件C有P(AB|C)=P(A|C)*P(B|C),则A与B相互独立

问题描述:

A和B两个随机事件,证明命题:对任意正概率随机事件C有P(AB|C)=P(A|C)*P(B|C),则A与B相互独立

由于对任意正概率随机事件C有P(AB|C)=P(A|C)*P(B|C),
因此特别地,对于C=Ω有 P(AB|Ω)=P(A|Ω)*P(B|Ω)
即 P(ABΩ)/P(Ω)=P(AΩ)/P(Ω)*P(BΩ)/P(Ω)
于是 P(AB)=P(A)*P(B)
由定义,A,B独立.