已知a^2+9b^2+6a+10=0,求代数式(6a^m+2 b^n+2-4a^m+1 b^n+1+2a^m b^n)除以(-2a^m b^n)

问题描述:

已知a^2+9b^2+6a+10=0,求代数式(6a^m+2 b^n+2-4a^m+1 b^n+1+2a^m b^n)除以(-2a^m b^n)
已知a^2+9b^2+6a-6a+10=0

题目有问题
a^2+9b^2+6a+10=0
a^2+6a+9+9b^2+1=0
(a+3)^2+9b^2+1=0
因为(a+3)^2>=0,9b^2+1>0
所以(a+3)^2+9b^2+1>0
即a^2+9b^2+6a+10>0已知a^2+9b^2+6a-6a+10=0a^2+9b^2+6a-6b+10=0 a^2+6a+9+9b^2-6b+1=0 (a+3)^2+(3b-1)^2=0 (a+3)^2=0,(3b-1)^2=0 a=-3 b=1/3[6a^(m+2) b^(n+2)-4a^(m+1) b^(n+1)+2a^m b^n]/(-2a^m b^n) =[6a^2*a^m*b^2* b^n-4a*a^m*b* b^n+2a^m b^n]/(-2a^m b^n) =2a^m b^n[3a^2b^2-2ab+1]/(-2a^m b^n) =-[3a^2b^2-2ab+1] =-[3(ab)^2-2ab+1] =-[3(-3*1/3)^2-2*(-3)*1/3+1] =-[3(-1)^2+2+1] =-[3+2+1] =-6