函数f(x)=lg|x-2|(x≠2) 1(x=2)

问题描述:

函数f(x)=lg|x-2|(x≠2) 1(x=2)
函数f(x)=lg|x-2|(x≠2)
1(x=2)
若关于x的方程[f(x)]2+b*f(x)+c=0,恰有3个不同的实数解x1,x2,x3x,求f(x1+x2+x3)的值.

因为有3个解,而如果x不取2,f(x)只会有0或2或4个解,
所以有一根必为1
不妨设x1=2,这时f(x)=1,1+b+c=0
且x2必须等于x3,因为要使f(x)的值相同
所以|x2-2|等于|x3-2|
所以x2+x3等于4
所以x1+x2+x3等于2+4=6