已知向量,a=(λ+2,λ2-cos2θ),b=(m,m/2+sinθ)(其中λ,m,θ∈R)且a=2b,求λ/m的取值范围.
问题描述:
已知向量,a=(λ+2,λ2-cos2θ),b=(m,m/2+sinθ)(其中λ,m,θ∈R)且a=2b,求λ/m的取值范围.
答
因为a=2b,故 λ+2=2m,即λ=2m-2.λ^2-(cosa)^2=m+2sina,代入λ=2m-2得到 4m^2-8m+4-(cosa)^2=m+2sina,整理得 4m^2-9m+4=(cosa)^2+2sina=1-(sina)^2+2sina,即 4m^2-9m+3= -(sina)^2+2sina,两边同时减去1,得到 4m^2-9m...