函数f(x)=lnx+x²-2ax+a²,a∈R.求f(x)的极值点.望详解
问题描述:
函数f(x)=lnx+x²-2ax+a²,a∈R.求f(x)的极值点.望详解
答
f(x)=lnx+x²-2ax+a²
so.f'(x)=1/x +2x-2a
极值点满足 f'(x)=0,求解方程等价于2x²-2ax+1=0 (*)
△=4a²-8
当a=0时候,f'(x)>0,函数单调无极值点;
当a∈(-√2,√2)时,(*)无解,函数单调自增,无极值点;
当a=±√2,(*)有两相同实根,极值点唯一为 X=a/
a属于其他情况时,(*)有两不同实根,极值点分别为 X=(2a±√(4a²-8))/4