设f(x)在[0,1]上有二阶连续导数,且满足f(1)=f(0)及|f''(x)|
问题描述:
设f(x)在[0,1]上有二阶连续导数,且满足f(1)=f(0)及|f''(x)|
数学人气:629 ℃时间:2020-07-14 12:10:02
优质解答
Taylor展式:对任意的x,
f(0)=f(x)+f'(x)(0-x)+f''(c1)(0-x)^2/2,
f(1)=f(x)+f'(x)(1-x)+f''(c2)(1-x)^2/2.
两式相减,得
f'(x)=f''(c1)x^2/2-f''(c2)(1-x)^2/2,
取绝对值并利用条件得
|f'(x)|最后的不等式是因为x^2+(1-x)^2在[0,1]
上的最大值是1.
f(0)=f(x)+f'(x)(0-x)+f''(c1)(0-x)^2/2,
f(1)=f(x)+f'(x)(1-x)+f''(c2)(1-x)^2/2.
两式相减,得
f'(x)=f''(c1)x^2/2-f''(c2)(1-x)^2/2,
取绝对值并利用条件得
|f'(x)|最后的不等式是因为x^2+(1-x)^2在[0,1]
上的最大值是1.
我来回答
类似推荐
答
Taylor展式:对任意的x,
f(0)=f(x)+f'(x)(0-x)+f''(c1)(0-x)^2/2,
f(1)=f(x)+f'(x)(1-x)+f''(c2)(1-x)^2/2.
两式相减,得
f'(x)=f''(c1)x^2/2-f''(c2)(1-x)^2/2,
取绝对值并利用条件得
|f'(x)|最后的不等式是因为x^2+(1-x)^2在[0,1]
上的最大值是1.