已知P是三角形ABC所在平面内一点,若PA(向量)*PB(向量)=PB*PC=PC*PA,则P是三角形ABC的什么心?A垂心 B重心 C内心 D外心
问题描述:
已知P是三角形ABC所在平面内一点,若PA(向量)*PB(向量)=PB*PC=PC*PA,则P是三角形ABC的什么心?
A垂心 B重心 C内心 D外心
答
...汗...垂心
答
垂心
PA(向量)*PB(向量)=PB*PC
PB*(PA-PC)=0
PB*CA=0
即PB与CA垂直
同理可证PA与BC垂直,PC与AB垂直
所以是垂心