已知集合A={x|x=a+1/6}B={x|x=b/2-1/3},B={x|x=c/2+1/6},试判断A B C 满足的关系A B C都属于Z

问题描述:

已知集合A={x|x=a+1/6}B={x|x=b/2-1/3},B={x|x=c/2+1/6},试判断A B C 满足的关系A B C都属于Z
已知集合A={x|x=a+1/6}B={x|x=b/2-1/3},B={x|x=c/2+1/6},试判断A B C 满足的关系(A B C都属于Z)

A={x|x=a+1/6}={x|x=(6a+1)/6}={x|x=[3×(2b)+1]/6}
B={x|x=b/2-1/3}={x|x=(3b-2)/6}={x|x=[3×(b-1)+1]/6}
C={x|x=c/2+1/6}={x|x=(3c+1)/6}

∵a  b  c都是整数

∴b-1与c表示的数相同,都是整数      2b表示偶数

∴B=C     A是B,C的真子集

即A、 B、C 的关系是A是B和C的真子集,B=C


答题不易,请采纳,谢谢