要使分式x^2-y^2/a^2x-a^2y乘以ax+ay/[x+y]^2
问题描述:
要使分式x^2-y^2/a^2x-a^2y乘以ax+ay/[x+y]^2
答
分子:(x^2-y^2)(ax+ay) =(X+Y)(X-Y) a(x+y)
分母:(a^2x-a^2y)[x+y]^2 =a ^2(x-y) [ x+y]^2
约分得:1/a
答
(x^2-y^2/a^2x-a^2y)*(ax+ay/[x+y]^2) =((x-y)(x+y)/(a^x-a^y)(a^x+a^y))*(a(x+y)/(x+y)^2)
=(x-y)/(a^(2x-1)-a^(2y-1))
答
(x^2-y^2)/(a^2x-a^2y)×[(ax+ay)/(x+y)^2]
=[(x+y)(x-y)]/[a^2(x-y)]×[a(x+y)/(x+y)^2]
=1/a
祝你好运