A、B都是n阶矩阵(n>1),则下来命题正确的是:A:AB=BA B、若AB=0,则A=0或B=0 C、(A-B)的平方=A的平方-2ABA、AB=BA B、若AB=0,则A=0或B=0 C、(A-B)的平方=A的平方-2AB的平方+B的平方 D、AB的绝对值=A的绝对值B的绝对值

问题描述:

A、B都是n阶矩阵(n>1),则下来命题正确的是:A:AB=BA B、若AB=0,则A=0或B=0 C、(A-B)的平方=A的平方-2AB
A、AB=BA B、若AB=0,则A=0或B=0
C、(A-B)的平方=A的平方-2AB的平方+B的平方
D、AB的绝对值=A的绝对值B的绝对值

(D) 是对的.
不过不是绝对值,是行列式 |AB| = |A||B|