P=∫ln|x+√(x^2+1)|dx是奇函数还是偶函数,为什么?(∫上限为1,下限为-1)

问题描述:

P=∫ln|x+√(x^2+1)|dx是奇函数还是偶函数,为什么?(∫上限为1,下限为-1)

f(x) =ln [x+√(x²+1)] f(-x)= ln[ -x+√(x²+1)] =ln { [-x+√(x²+1)] [x+√(x²+1)] / [x+√(x²+1)] }= ln 1/ [x+√(x²+1)] = - ln [x+√(x²+1)]= - f(x)∴f(x)是奇函数故P= ∫ ...