设X1=1和X2=2是函数f(x)=alnx+bx平方+x的两个极值点,a = -2/3 b = -1/6,求f(x)的单调区间?
问题描述:
设X1=1和X2=2是函数f(x)=alnx+bx平方+x的两个极值点,a = -2/3 b = -1/6,求f(x)的单调区间?
答
显然定义域x>0
f'(x)=-2/(3x)-x/3+1=-(x^2-3x+2)/3x
由f'(x)>0得增区间是1