求证:全等三角形的对应角平分线相等.

问题描述:

求证:全等三角形的对应角平分线相等.

已知:如图,△ABC≌△A′B′C′,AD、A′D′是∠BAC和∠B′A′C′的平分线,
求证:AD=A′D′,
证明:∵△ABC≌△A′B′C′,
∴∠B=∠B′,AB=A′B′,
∠BAC=∠B′A′C′,
∵AD平分∠BAC,A′D′平分∠B′A′C′,
∴∠BAD=∠B′A′D′,
∴△ABD≌△A′B′D′,
∴AD=A′D′.