求f(x,y)=,max{|(x-y)/(x+2y+3)|,(x+2)/(x+2y+3),(5y+4)/(x+2y+3)}的最小值

问题描述:

求f(x,y)=,max{|(x-y)/(x+2y+3)|,(x+2)/(x+2y+3),(5y+4)/(x+2y+3)}的最小值
用max{a,b,c}表示a,b,c三个数中的最大值,设f(x,y)=,max{|(x-y)/(x+2y+3)|,(x+2)/(x+2y+3),(5y+4)/(x+2y+3)}(x,y∈R),求f(x,y)的最小值

令(x-y)/(x+2y+3)> 0 ,有(x-y)/(x+2y+3)+(x+2)/(x+2y+3)+(5y+4)/(x+2y+3)=2 ,f(x,y)的最小值为2/3(x=-8,y=-2).若(x-y)/(x+2y+3)〈 0,设(x-y)〈0,则(x+2y+3)> 0,y〉x,令y=x+t,有t>0,(y-x)/...