球体积公式的导数是球的表面积,球表面积公式的导数又是什么意义呢?
问题描述:
球体积公式的导数是球的表面积,球表面积公式的导数又是什么意义呢?
如题,再如,圆面积2πR的导数是2π,是圆周角,但球表面积4πR2的导数8πR有什么意义呢?
答
在形式上:球的体积的导数 = 球的表面
圆的面积的导数 = 圆的周长
圆的周长的导数 = 整个圆的圆周角
在意义上:球的体积的导数 ≠ 球的表面
圆的面积的导数 ≠ 圆的周长
圆的周长的导数 ≠ 整个圆的圆周角
【形式上的巧合只是偶然的,意义上不同是必然的】
因为圆是最特别的图形:
圆的周长 = ∑小扇形的弧长
= ∑圆的半径×小扇形的弧度
= ∑圆的半径×Δθ
= R∑Δθ
= 2πR
=∫Rdθ
= 2πR
圆的面积 = ∑小圆环的周长×小圆环的宽度
= ∑2πr×Δr
=∫2πrdr
= πR²
球的体积 = ∑小球壳的面积×小球壳的厚度
= ∑4πr²×Δr
=∫4πr²dr
= 4πR³/3
这些都是积分基本思想、基本方法.
就是:【分割、求和、取极限(过渡到积分)】
导数是指空间变化率:
如果球体的半径在变,对半径的求导的意义是:
【半径每变化一个单位所引起的球体体积大小的变化】
★ 它在大小的量值上正好等于球表面的面积.
★ 圆的面积、周长的解释完全类似.
★ 这是巧合,对于椭圆(球)、三角形、正方形、立方体、、、、都不成立!
作为趣味归类,OK;
作为方法归类,NA = Not Applicable.
圆只是Special Case.Not common sense.