若x>o,y>o,且根号x(根号x+根号y)=3根号y(根号x+5根号y)求x+根号xy分之2x-根号xy-5y
问题描述:
若x>o,y>o,且根号x(根号x+根号y)=3根号y(根号x+5根号y)求x+根号xy分之2x-根号xy-5y
式子是√x(√x+√y)=3√y(√x+5√y),求x+√xy分之2x-√xy-5y
答
由√x(√x+√y)=3√y(√x+5√y),得到:
(√x)²-3√x*√y)-15(√y)²=0;
(√x-5√y)*(√x+3√y)=0;
(√x-5√y)=0;√x=5√y;
所以:(2x-√xy-5y)/(x+√xy)=(45y-5√y*√y)/(25y+5√y*√y)
=40y/30y=4/3.