在△ABC中,C=90°,AC=1,BC=2,求f(λ)=|2λ向量CA+(1-λ)向量CB|的最小值

问题描述:

在△ABC中,C=90°,AC=1,BC=2,求f(λ)=|2λ向量CA+(1-λ)向量CB|的最小值

f(λ)=|2λ向量CA+(1-λ)向量CB|
f(λ)*f(λ)=|2λ向量CA+(1-λ)向量CB|^2=(4λ^2*1+(1-λ)^2*4)
=8(λ^2-λ+1/4)+2
>=2
所以f(λ) >=根号2