已知关于x的方程x^2+(2m+1)x+m^2+2=0有两个相等的实数根,试判断直线y=(2m-3)x-4m+7是否通过A(-2,4),并说明理由
问题描述:
已知关于x的方程x^2+(2m+1)x+m^2+2=0有两个相等的实数根,试判断直线y=(2m-3)x-4m+7是否通过A(-2,4),并说明理由
答
∵x^2+(2m+1)x+m^2+2=0有两个不相等的实数根
∴△=b^2-4ac>0 即(2m+1)^2-4(m^2+2)>0
解之得m>7/4
∴ 2m-3>0 ,-4m+7