已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(2,0),C(0,-2),直线x=m(m>2)与x轴交于点D.(1)求二次函数的解析式;(2)在直线x=m(m>2)上有一点E(点E在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.

问题描述:

已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(2,0),C(0,-2),直线x=m(m>2)与x轴交于点D.
作业帮
(1)求二次函数的解析式;
(2)在直线x=m(m>2)上有一点E(点E在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式表示);
(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.

(1)根据题意,得a+b+c=04a+2b+c=0c=-2解得a=-1,b=3,c=-2.∴y=-x2+3x-2.(2)当△EDB∽△AOC时,得AOED=COBD或AOBD=COED,∵AO=1,CO=2,BD=m-2,当AOED=COBD时,得1ED=2m-2,∴ED=m-22,∵点E在第四象限,∴E...
答案解析:(1)已知函数的图象经过A,B,C三点,把三点的坐标代入解析式就可以得到一个三元一次方程组,就可以求出函数的解析式;
(2)E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,这两个三角形都是直角三角形,因而应分△AOC∽△EDB和△AOC∽△BDE两种情况讨论.△AOC的三边已知,△BDE中,BD=m-2,而DE=-m.根据相似三角形的对应边的比相等,就可以求出m的值;
(3)四边形ABEF是平行四边形,因而EF=AB,且这两个点的纵坐标相同,E点的纵坐标是m,把x=m代入抛物线的解析式就可以求出点F的横坐标,则EF的长就可以求出.根据EF=AB就可以得到一个关于m的方程,解方程就可以求出m的值.若m的值存在,就可以求出四边形的面积.
考试点:二次函数综合题.
知识点:本题主要考查了待定系数法求函数的解析式,以及平行四边形的判定方法,是一个存在性问题,在中考中经常出现.