已知函数f(x)=1-sin2x/1-cos^2(π/2-x)①若tanα=-2,求f(α)的值②求函数y=cotxf(x)的定义域和值域
已知函数f(x)=1-sin2x/1-cos^2(π/2-x)
①若tanα=-2,求f(α)的值
②求函数y=cotxf(x)的定义域和值域
是不是cotx应为cosx ?
cos^2(π/2-x)是[cos (π/2-x) ]^2?
f(x)=1-sin2x/1-cos^2(π/2-x)
=1-sin2x/[sin(π/2-x)]^2
=1- sin2x/(cosx)^2
=1-2sinxcosx/(cosx)^2
=1-2tanx
故若tanα=-2,f(α)=5
y=cosxf(x)
=cosx (1-2tanx)
=cosx*(cosx-2sinx)/cosx
= cosx-2sinx (设cosθ=1/根5,sinθ=2/根5)
=根5 *cos(x+θ)
故y的定义域为实数,值域是[-根5,根5]
1..
f(x)=[1-sin(2x)]/[1-cos^2(π/2 -x)]
=[sin^2(x)+cos^2(x)-2sinxcosx]/[1-sin^2(x)]
=[sin^2(x)+cos^2(x)-2sinxcosx]/(cosx)^2
=(tanx)^2-2tanx +1
=(tanx-1)^2
f(α)=(tanα -1)^2=(-2-1)^2=9
2.
f(x)有意义,cosx≠0,cotx有意义,sinx≠0,综上,得sinx≠0且cosx≠0
x≠kπ/2 (k∈Z),函数定义域{x|x≠kπ/2 ,k∈Z}
f(x)=cotxf(x)
=cotx[(tanx)^2 -2tanx +1]
=tanx -2 + 1/tanx
由均值不等式得tanx +1/tanx≥2或tanx +1/tanx≤-2
y≥0或y≤-4
函数的值域为(-∞,-4]U[0,+∞)