设数A共有9个不同约数,B共有6个不同约数,C共有8个不同约数,这三个数中的任何两个都互不整除,则三个数之积的最小值是_.
问题描述:
设数A共有9个不同约数,B共有6个不同约数,C共有8个不同约数,这三个数中的任何两个都互不整除,则三个数之积的最小值是______.
答
因为A有9个不同的约数,那么A就是平方数,最小是22×32=36
B有6个不同约数,最小是22×3=12,
AB互不整除,那B最小只能是22×5=20,
C有8个不同约数,最小是2×3×4=24,
所以三个数之积最小是:36×20×24=17280.
故答案为:17280.