过抛物线y2=4ax(a>0)的焦点F,作相互垂直的两条焦点弦AB和CD,求|AB|+|CD|的最小值.

问题描述:

过抛物线y2=4ax(a>0)的焦点F,作相互垂直的两条焦点弦AB和CD,求|AB|+|CD|的最小值.

抛物线的焦点F坐标为(a,0),设直线AB方程为y=k(x-a),
则CD方程为y=−

1
k
(x−a),
分别代入y2=4x得:k2x2-(2ak2+4a)x+k2a2=0及
1
k2
x2−(2a
1
k2
+4a)x+
a2
k2
=0

|AB|=xA+xB+p=2a+
2a
k2
+2a
,|CD|=xC+xD+p=2a+4ak2+2a,
|AB|+|CD|=8a+
4a
k2
+4ak2≥16a
,当且仅当k2=1时取等号,
所以,|AB|+|CD|的最小值为16a.
答案解析:根据抛物线方程求得焦点坐标,设直线AB方程为y=k(x-a),则CD方程可得,分别代入抛物线方程,根据抛物线定义可知|AB|=xA+xB+p,|CD|=xC+xD+p进而可求得|AB|+|CD|的表达式,根据均值不等式求得|AB|+|CD|的最小值为16a.
考试点:抛物线的应用.
知识点:本题主要考查了抛物线的应用.涉及了直线与抛物线的关系及抛物线的定义.