某工地在冬季水利建设中设计了一个提起重物的机械,其中的一部分结构如图所示.OA是一个均匀钢管,每米长所受重力为30N;O是转动轴;重物的质量m为150kg,挂在B处,OB=1m;拉力F作用在A

问题描述:

某工地在冬季水利建设中设计了一个提起重物的机械,其中的一部分结构如图所示.OA是一个均匀钢管,每米长所受重力为30N;O是转动轴;重物的质量m为150kg,挂在B处,OB=1m;拉力F作用在A点,竖直向上.为维持平衡,钢管OA为多长时所用的拉力最小?这个最小拉力是多少?(g取10N/kg)

由题意可知,杠杆的动力为F,动力臂为OA,阻力分别是重物G和钢管的重力G钢管,阻力臂分别是OB和

1
2
OA,
重物的重力G=mg=150kg×10N/kg=1500N,
钢管的重力G钢管=30N×OA,
由杠杆平衡条件F1L1=F2L2可得:F•OA=G•OB+G钢管
1
2
OA,
则F•OA=1500N×1m+30N•OA•
1
2
OA,
得:F•OA=1500+15•(OA)2
移项得:15•(OA)2-F•OA+1500=0,
由于钢管的长度OA是确定的只有一个,所以该方程只能取一个解,
因此应该让根的判别式b2-4ac等于0,因为当b2-4ac=0时,方程有两个相等的实数根,即有一个解,
则F2-4×15×1500=0,
则F2-90000=0,
得F=300N,
将F=300N代入方程15•(OA)2-F•OA+1500=0,
解得OA=10m.
答:为维持平衡,钢管OA为10m长时所用的拉力最小,这个最小拉力是300N.