已知抛物线y=1/2x2+bx经过点A(4,0).设点C(1,3),请在抛物线的对称轴上确定一点D,使得|AD-CD|的值最大,则D点的坐标为_.
问题描述:
已知抛物线y=
x2+bx经过点A(4,0).设点C(1,3),请在抛物线的对称轴上确定一点D,使得|AD-CD|的值最大,则D点的坐标为______. 1 2
答
∵抛物线y=12x2+bx经过点A(4,0),∴12×42+4b=0,∴b=-2,∴抛物线的解析式为:y=12x2-2x=12(x-2)2-2,∴抛物线的对称轴为x=2,∵点C(1,3),∴作点C关于x=2的对称点C′(3,3),直线AC′与x=2的交点即为D,...