高数,积分.设f(x)dx为x^2/(1+x)^(-1/2)+c,则x^2 f(x^3+1) dx为多少,求讲解
问题描述:
高数,积分.设f(x)dx为x^2/(1+x)^(-1/2)+c,则x^2 f(x^3+1) dx为多少,求讲解
答
答:
∫f(x)dx=x^2/(1+x)^(-1/2)+C
∫x^2 f(x^3+1) dx
=(1/3)∫f(x^3+1)d(x^3+1) 令t=x^3+1:
=(1/3)f(t)dt
=(1/3)*t^2/(1+t)^(-1/2)+C
=(1/3)(x^3+1)^2/(x^3+2)^(-1/2)+C