怎么解一元三次方程?比如?

问题描述:

怎么解一元三次方程?比如?

在一个等式中,只含有一个未知数,且未知数的最高次数是3次的整式方程叫做一元三次方程.
  一元三次方程是型如ax^3+bx^2+cx+d=0的标准型
  其解法如下
  将上面的方程化为x^3+bx^2+cx+d=0,
  设x=y-b/3,则方程又变为y^3+(c-b^2/3)y+(2b^3/27-bc/3+d)=0
  设p=c-b^2/3,q=2b^3/27-bc/3+d,方程为y^3+py+q=0
  再设 y=u+v  {  p=—3uv
  则(u^3+v^3)+3uv(u+v)+p(u+v)+q=0 = u^3+v^3+q=0
  所以q+u^3-(p/(3u))^3=0,即(u^3)^2+qu^3-(p/3)^3=0
  设u^3=t,则t^2+qt-(p/3)^3=0
  解得t=(-q±(q^2+4(p/3)^3)^0.5)/2
  所以u=((-q±(q^2+4(p/3)^3)^0.5)/2)^(1/3),
  所以v=—p/(3u)=(-p/3)/((-q±(q^2+4(p/3)^3)^0.5)/2)^(1/3)
  所以y1=u+v
  =((-q±(q^2+4(p/3)^3)^0.5)/2)^(1/3)+(-p/3)/((-q±(q^2+4(p/3)^3)^0.5)/2)^(1/3)
  这是一个根,现求另两根:
  将y1代入方程得
  y^3+py+q=(y-y1)*f(x)
  f(x)用待定系数法求,即设
  y^3+py+q
  =(y-y1)(y^2+k1y+k2)
  =y^3+(k1-y1)y^2+(k2-k1y1)y-k2y1
  所以k1=y1,k2=p+k1^2
  然后用求根公式解出另两根y2,y3.