直线l1:y=x、l2:y=x+2与⊙C:x2+y2-2mx-2ny=0 的四个交点把⊙C分成的四条弧长相等,则m=(  ) A.0或1 B.0或-1 C.-1 D.1

问题描述:

直线l1:y=x、l2:y=x+2与⊙C:x2+y2-2mx-2ny=0 的四个交点把⊙C分成的四条弧长相等,则m=(  )
A. 0或1
B. 0或-1
C. -1
D. 1

∵直线l1∥l2,且l1、l2把⊙C分成的四条弧长相等,画出图形,如图所示;又⊙C可化为(x-m)2+(y-n)2=m2+n2,当m=0,n=1时,圆心为(0,1),半径r=1,此时l1、l2与⊙C的四个交点(0,0),(1,1),(0,2),(-...